A Novel Parallel DTC Segmentation Scheme for Fractional-N Digital PLLs

  • Tuan Minh Vo The University of Danang, University of Science and Technology, Vietnam

Abstract

In this paper, we propose a new parallel segmentation scheme for the digital/time converter (DTC) which is employed in fractional-N digital phase-locked loops (PLLs) to cancel out the quantization error induced by the digital DS modulator. The proposed parallel scheme removes one redundant least-mean square (LMS) gain in compared with the conventional parallel one. Therefore, the design of the system becomes less complicated while guaranteeing a fast convergence speed of the LMS gains and a short DTC time range. The effectiveness of the proposed segmentation scheme is demonstrated via simulations of a digital PLL built at behavioral level and compared to the conventional segmentation schemes.

Downloads

Download data is not yet available.

References

[1]. D. Tasca, M. Zanuso, G. Marzin, S. Levantino, C. Samori, and A. L. Lacaita, “A 2.9-to-4.0GHz Fractional-N Digital PLL with Bang-Bang Phase Detector and 560fsrms Integrated Jitter at 4.5mW Power,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2745–2758, Dec. 2011.
[2]. R. Nonis, W. Grollitsch, T. Santa, D. Cherniak, and N. Da Dalt, DigPLL-Lite: a low-complexity, low-jitter fractional-N digital PLL architecture,” IEEE J. of Solid-State Circuits, vol. 48, no. 12, pp. 3134–3145, Dec. 2013.
[3]. A. Elkholy, T. Anand, W.-S. Choi, A. Elshazly, and P. K. Hanumolu, “A 3.7mW 3MHz bandwidth 4.5GHz digital frac-tional-N PLL with 106dBc/Hz In-band noise using time ampli-fier based TDC,” in Digest of IEEE Symposium on VLSI CIr-cuits, Jun. 2014.
[4]. X. Gao, O. Burg, H. Wang, W. Wu, C. T. Tu, K. Manetakis, F. Zhang, L. Tee, M. Yayla, S. Xiang, R. Tsang, and L. Lin, “A 2.7-to-4.3GHz, 0.16psrms-jitter, -246.8dB-FOM, Digital Frac-tional-N Sampling PLL in 28nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2016, pp. 174–175.
[5]. L. Bertulessi, L.Grimaldi, D. Cherniak, C. Samori, and S. Levantino, “A low-phase-noise digital bang-bang PLL with fast lock over a wide lock range,” IEEE ISSCC Dig. Tech. Pa-pers, pp. 252–253, Feb. 2018.
[6]. T. M. Vo, C. Samori, and S. Levantino, “A Novel LMS-Based Calibration Scheme for Fractional-N Digital PLLs,” Proc. IEEE Symposium on Circuits and Systems (ISCAS), pp. 1–4, May. 2018.
[7]. M. Zanuso, S. Levantino, C. Samori, and A. L. Lacaita, “A Wideband 3.6 GHz Digital Fractional-N PLL with Phase Inter-polation Divider and Digital Spur Cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 627–638, Mar. 2011.
[8]. C. Samori, M. Zanuso, S. Levantino, and A. L. Lacaita, “Mul-tipath adaptive cancellation of divider non-linearity in frac-tional-N PLLs,” in Proc. IEEE Symposium on Circuits and Systems (ISCAS), 2011, pp. 418–421.
[9]. A. Santiccioli, C. Samori, A. Lacaita, and S. Levantino, “Pow-er-jitter trade-off analysis in digital-to-time converters,” IET Electronics Letters, vol. 53, no. 5, pp. 306–308, Mar. 2017.
[10]. T. M. Vo, C. Samori, A. L. Lacaita, and S. Levantino, “A Novel Segmentation Scheme for DTC-based  Fractional-N PLL,” Proc. IEEE Symposium on Circuits and Systems (IS-CAS), pp. 1–4, May. 2017.
[11]. T. M. Vo, S. Levantino, and C. Samori, “Analysis of Frac-tional-N Bang-Bang Digital PLLs using Phase Switching Tech-nique,” in 12th Conference on Ph.D. Research in Microelec-tronics and Electronics (PRIME), 2016.
[12]. S. Levantino, G. Marzin, and C. Samori, “An Adaptive Pre-Distortion Technique to Mitigate the DTC Non-Linearity in Digital PLLs,” IEEE J. of Solid-State Circuits, vol. 49, no. 8, pp. 1762–1772, Aug. 2012.
Published
2020-04-30
How to Cite
VO, Tuan Minh. A Novel Parallel DTC Segmentation Scheme for Fractional-N Digital PLLs. Journal of Science and Technology: Issue on Information and Communications Technology, [S.l.], v. 18, n. 4.2, p. 1-7, apr. 2020. ISSN 1859-1531. Available at: <http://ict.jst.udn.vn/index.php/jst/article/view/99>. Date accessed: 25 nov. 2024. doi: https://doi.org/10.31130/ict-ud.2020.99.