Photovoltaic effect in nanopore based bilayer MoS2 devices
Abstract
In this work, we fabricated and measured a bilayer MoS2 devices based on nanopore structure. The bilayer MoS2 films were synthesized and placed on top of the nanopore. The gold metal is then evaporated and contacted to top and bottom of MoS2 film to form electrodes for electronic measurement. The asymmetric Au/MoS2/Au devices exhibit current-voltage rectification which is attributed to photovoltaic properties. The photo-response of a nanopore based bilayer MoS2 devices is investigated which shows short circuit current as well as open circuit voltage under illumination. It is also found that the photogain of devices is calculated in the range of 105 and switching behavior with light is stable and reproducible. These characteristics make atomic layered MoS2 device to be great potential for application in electronics and optoelectronics.
Downloads
References
[2] X. Wu, H. Zhang, J. Zhang, X. W. Lou, “Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion”, Adv. Matter. 33, 2021, pp. 2008376.
[3] S. Anju, P. V. Mohanan, “Biomedical applications of transition metal dichalcogenides (TMDCs)”, Synthetic Metals 271, 2021, pp. 116610.
[4] Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, “High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes”, Science 267, 1995, pp. 222-225.
[5] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, J. F. Chim, G. Galli, F. Wang, “Emerging Photoluminescence in Monolayer MoS2”, Nano Lett. 10, 2010, pp. 1271-1275.
[6] L. Wang, L. Chen, S. L. Wong, X. Huang, W. Liao, C. Zhu, Y. F. Lim, D. Li, X. Liu, D. Chi, K. W. Ang, “Electronic Devices and Circuits Based on Wafer-Scale Polycrystalline Monolayer MoS2 by Chemical Vapor Deposition”, Adv. Electro. Matter. 5, 2019, pp. 1900393.
[7] N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu, J. Zhao, X. Lu, G. Wang, C. He, L. Xie, J. Zhu, L. Du, R. Yang, D. Shi and G. Zhang, “Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors”, Nature Electronics 3, 2020, pp. 711–717.
[8] N. R. Glavin, C. Muratore, M. Snure, “Toward 2D materials for flexible electronics: opportunities and outlook”, Oxford Open Materials Science 1, 2020, pp. 1−7.
[9] L. N. Nguyen, “High performance trilayer MoS2 photodetector”, Journal of Science and Technology: Issue on information and communications technology 18, 2020, pp. 21-25.
[10] K. K. Li, W. Zhan, Y. H. Lee, Y. C. Lin, M. T. Chang, C.Y. Su, C. S. Chang, H. Y. Li, Y. Shi, H. Zhang, C. S. Lai, L. J. Li, “Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates”, Nano Lett. 12, 2012, pp. 1538−1544.
[11] Nguyen, L. N., Lan, Y. W., Chen, J. H., Chang, T. R., Zhong, Y. L., Jeng, H. T., Li, L. J., Chen, C. D., “Resonant Tunneling through Discrete Quantum States in Stacked Atomic-Layered MoS2”, Nano Letters 14, 2014, pp. 2381-2386.
[12] M. A. Reed, C. Zhou, M. R. Deshpande, C. J. Muller, T. P. Burgin, L. Jones II, J. M. Tour, “The Electrical Measurement of Molecular Junctions”, Ann. N.Y. Acad. Sci. 852, 1998, pp. 133.
[13] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions”, Scientific Reports 3, 2013, pp.1634.
[14] S. Ryu, N. Y. Ha, Y. H. Ahn, J. Y. Park,S. Lee, “Light intensity dependence of organic solar cell operation and dominance switching between Shockley–Read–Hall and bimolecular recombination losses”, Scientific Reports 11, 2021, pp.16781.
[15] S. Ryu, D. C. Nguyen, Na.Y. Ha, H. J. Park, Y. H. Ahn, J. Y. Park, S. Lee, “Light Intensity-dependent Variation in Defect Contributions to Charge Transport and Recombination in a Planar MAPbI3 Perovskite Solar Cell”, Scientific Reports 9, 2019, pp.19846.
[16] C. Lan, C. Li, Y. Yin, H. Guoa, S. Wang, “Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors”, J. Mater. Chem. C 3, 2015, pp.8074-8079.