All optical logic gates based on nanoplasmonic MIM waveguides

  • Nguyen Van Tai Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Do Huu Tuan Hanoi University of Science and Technology, Hanoi, Vietnam
  • Nguyen Tan Hung The University of Danang - Advanced Institute of Science and Technology and The University of Danang - University of Science and Technology, Danang, Vietnam
  • Dang Hoai Bac Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Truong Cao Dung Posts and Telecommunications Institute of Technology, Hanoi, Vietnam and The University of Danang - Advanced Institute of Science and Technology, Danang, Vietnam

Abstract

In this paper, we propose and investigate some designs of basic plasmonic logic gates in two dimensional plasmonic waveguides with nanotube metal-insulator-metal waveguides using the numerical method of eigenmode expansion. These gates, including XOR, OR, NOT, and Feynman gate can be realized by changing geometrical parameters properly. Also, by cascading and combining these basic logic gates, any complex logic function can also be obtained providing the highly integrated optical logic circuits. The proposed logic gates have the broadband up to 300 nm and only spend the compact size as much as 2 µm×1.2 µm. Thus, the devices can be applied widely and significantly in optical computing and processing devices.

Downloads

Download data is not yet available.

References

[1] A. Mascarenhas, Y. Zhang, J. Verley, and M. J. Seong, Overcoming limitations in semiconductor alloy design,, Superlattices Microstruct., vol. 29, no. 6, pp. 395–404, 2001.
[2] C. Hu, Q. Chen, F. Chen, T. H. Gfroerer, M.W.Wanlass, and Y.Zhang, Overcoming diffusion-related limitations in semiconductor defect imaging with phonon-plasmon-coupled mode Raman scattering,, Light Sci. Appl., vol. 7, no. 1, 2018.
[3] D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit,, Nat. Photonics, vol. 4, no. 2, pp. 83–91, 2010.
[4] M. Dragoman and D. Dragoman, Plasmonics: Applications to nanoscale terahertz and optical devices,, Prog. Quantum Electron., vol. 32, no. 1, pp. 1–41, 2008.
[5] J. M. Pitarke, V. M. Silkin, E. V Chulkov, and P. M. Echenique, Theory of surface plasmons and surface-plasmon polaritons,, Reports Prog. Phys., vol. 1, no. 1, p. 54, 2006.
[6] E. Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,, Science (80-. )., vol. 311, pp. 189–193, 2012.
[7] A. M. Ionescu, Electronic devices: Nanowire transistors made easy,, Nat. Nanotechnol., vol. 5, no. 3, pp. 178–179, 2010.
[8] X. Fang, K. F. MacDonald, and N. I. Zheludev, Controlling light with light using coherent metadevices: All-optical transistor, summator and invertor,, Light Sci. Appl., vol. 4, no. 5, pp. 1–7, 2015.
[9] D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A single-photon transistor using nanoscale surface plasmons,, Nat. Phys., vol. 3, no. 11, pp. 807–812, 2007.
[10] C. Hoessbacher et al., Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,, Opt. Express, vol. 25, no. 3, p. 1762, 2017.
[11] X. Sun, D. Dai, L. Thylén, and L. Wosinski, High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,, Opt. Express, vol. 23, no. 20, p. 25688, 2015.
[12] A. Emboras et al., Electrically controlled plasmonic switches and modulators,, IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 4, 2015.
[13] B. Ni and J. Xiao, Ultracompact and broadband silicon-based TEpass 1 2 power splitter using subwavelength grating couplers and hybrid plasmonic gratings,, Opt. Express, vol. 26, no. 26, p.
33942, 2018.
[14] L. Gao, Y. Huo, J. S. Harris, and Z. Zhou,Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,, IEEE Photonics Technol. Lett., vol. 25, no. 21, pp. 2081–2084, 2013.
[15] N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong,The Fano resonance in plasmonic nanostructures and metamaterials,, Nat. Mater., vol. 9, no. 9, pp. 707–715, 2010.
[16] C.-T. Wu, C.-C. Huang, and Y.-C. Lee,Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes,, Appl. Opt., vol. 56, no. 14, p. 4039, 2017.
[17] D. Bradley,Plasmonic communication,, Mater. Today, vol. 19, no. 4, p. 184, 2016.
[18] R. Zafar and M. Salim, Analysis of asymmetry of Fano resonance in plasmonic metal-insulator-metal waveguide,, Photonics Nanostructures - Fundam. Appl., vol. 23, pp. 1–6, 2017.
[19] Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragggrating-based MIM waveguide,, Opt. Express, vol. 17, no. 16, p.13727, 2009.
[20] Q. Xu and M. Lipson, All-optical logic based on silicon micro-ring resonators,, Opt. Express, vol. 15, no. 3, p. 924, 2007.
[21] L. Wang, L. Yan, Y. Guo, K. Wen, W. Pan, and B. Luo, Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides,, Opt. Express, vol. 21, no. 12, p. 14442, 2013.
[22] Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,, Nano Lett., pp. 1–7, 2012.
[23] M. Z. Interferometer, R. Katti, and S. Prince, All Optical new 3x3 reversible logic gate using Mach-Zehnder Interferometer,, Opt. Quantum Electron., pp. 1–18, 2016.
[24] S. Gao, X. Wang, Y. Xie, P. Hu, and Q. Yan, Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding,, Opt. Lett., vol. 40, no. 7, pp. 1448–1451, 2015.
[25] G. K. Bharti, M. P. Singh, and J. K. Rakshit, Design and Modeling of Polarization-Conversion Based all-Optical Basic Logic Gates in a Single Silicon Ring Resonator,, Silicon, 2019.
[26] R. Sattibabu and P. Ganguly, Design of reversible optical Feynman gate using directional couplers,, Opt. Eng., vol. 59, no. 02, p. 1, 2020.
[27] A. Heydari, A. Bahrami, and A. Mahmoodi, All-Optical XOR, XNOR, NAND and or Logic Gates Based on Photonic Crystal 3-DB Coupler for BPSK Signals,, J. Opt. Commun., pp. 1–9, 2019.
[28] Z. Yin et al., All-Optical Logic Gate for XOR Operation between 40-Gbaud QPSK Tributaries in an Ultra-Short Silicon Nanowire,, IEEE Photonics J., vol. 6, no. 3, pp. 1–7, 2014.
[29] C. Cecati, F. Ciancetta, and P. Siano, A multilevel inverter for photovoltaic systems with fuzzy logic control,, IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4115–4125, 2010.
[30] C. Murapaka, P. Sethi, S. Goolaup, and W. S. Lew, Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure,, Sci. Rep., vol. 6, pp. 1–11, 2016.
[31] G. Reiss and D. Meyners, Reliability of field programmable magnetic logic gate arrays,, Appl. Phys. Lett., vol. 88, no. 4, pp. 1–3, 2006.
[32] Y. N. Kulchin, O. B. Vitrik, and A. V. Dyshlyuk, Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method,, Opt. Express, vol. 22, no. 18, p. 22196, 2014.
[33] P. Bienstman, E. Six, M. Roelens, M. Vanwolleghem, and R. Baets, Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers,, IEEE Photonics Technol. Lett., vol. 14, no. 2, pp. 164–166, 2002.
[34] A. E. Grigorescu, M. C. van der Krogt, C. W. Hagen, and P. Kruit, 10 nm lines and spaces written in HSQ, using electron beam lithography,, Microelectron. Eng., vol. 84, no. 5–8, pp. 822–824, 2007.
[35] S. Cabrini et al., Focused ion beam lithography for two dimensional array structures for photonic applications,, Microelectron. Eng., vol. 78–79, no. 1–4, pp. 11–15, 2005.
[36] J. Park, H. Kim, and B. Lee, High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,, Opt. Express, vol. 16, no. 1, p. 413, 2008.
[37] G. Ghosh, M. Endo, and T. Iwasaki, Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,, J. Light. Technol., vol. 12, no. 8, pp. 1338–1342, 1994.
[38] C. Z. Tan and J. Arndt, Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,, J. Phys. Chem. Solids, vol. 61, no. 8, pp. 1315–1320, 2000.
[39] E. Fontana, J.-M. Kim, I. Llamas-Garro, and G. O. Cavalcanti, Microfabricated Otto chip device for surface plasmon resonancebased optical sensing,, Appl. Opt., vol. 54, no. 31, p. 9200, 2015.
[40] J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration?,, Sci. Rep., vol. 5, 2015.
[41] L. Li et al., Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor,, Opt. Express, vol. 25, no. 22, p. 26950, 2017.
[42] M. Wu, Z. Han, and V. Van, Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,, Opt. Express, vol. 18, no. 11, p. 11728, 2010.
[43] D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement.,, Opt. Express, vol. 17, no. 19, pp. 16646–53, 2009.
[44] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, Integrated optical components utilizing long-range surface plasmon polaritons,, J. Light. Technol., vol. 23, no. 1, pp. 413–422, 2005.
[45] H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,, Opt. Express, vol. 19, no. 14, pp. 12885–12890, 2011.
[46] Y. J. He, Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,, Opt. Express, vol. 21, no. 12, p. 13875, 2013.
[47] P. Sethi and S. Roy, All-Optical Ultrafast Switching in 2 x 2 Silicon Microring Resonators and its Application to Reconfigurable DEMUX / MUX and Reversible Logic Gates,, J. Light. Technol., vol. 8724, pp. 1–8, 2014.
Published
2020-12-29
How to Cite
TAI, Nguyen Van et al. All optical logic gates based on nanoplasmonic MIM waveguides. Journal of Science and Technology: Issue on Information and Communications Technology, [S.l.], v. 18, n. 12.2, p. 1-7, dec. 2020. ISSN 1859-1531. Available at: <http://ict.jst.udn.vn/index.php/jst/article/view/107>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.31130/ict-ud.2020.107.